Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 174: 116492, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38537579

RESUMO

Targeting epigenetic mechanisms has emerged as a potential therapeutic approach for the treatment of kidney diseases. Specifically, inhibiting the bromodomain and extra-terminal (BET) domain proteins using the small molecule inhibitor JQ1 has shown promise in preclinical models of acute kidney injury (AKI) and chronic kidney disease (CKD). However, its clinical translation faces challenges due to issues with poor pharmacokinetics and side effects. Here, we developed engineered liposomes loaded with JQ1 with the aim of enhancing kidney drug delivery and reducing the required minimum effective dose by leveraging cargo protection. These liposomes efficiently encapsulated JQ1 in both the membrane and core, demonstrating superior therapeutic efficacy compared to freely delivered JQ1 in a mouse model of kidney ischemia-reperfusion injury. JQ1-loaded liposomes (JQ1-NPs) effectively targeted the kidneys and only one administration, one-hour after injury, was enough to decrease the immune cell (neutrophils and monocytes) infiltration to the kidney-an early and pivotal step to prevent damage progression. By inhibiting BRD4, JQ1-NPs suppress the transcription of pro-inflammatory genes, such as cytokines (il-6) and chemokines (ccl2, ccl5). This success not only improved early the kidney function, as evidenced by decreased serum levels of BUN and creatinine in JQ1-NPs-treated mice, along with reduced tissue expression of the damage marker, NGAL, but also halted the production of extracellular matrix proteins (Fsp-1, Fn-1, α-SMA and Col1a1) and the fibrosis development. In summary, this work presents a promising nanotherapeutic strategy for AKI treatment and its progression and provides new insights into renal drug delivery.

2.
Int J Biol Sci ; 20(5): 1547-1562, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481808

RESUMO

Renal ischemia-reperfusion injury (IRI) leads to endoplasmic reticulum (ER) stress, thereby initiating the unfolded protein response (UPR). When sustained, this response may trigger the inflammation and tubular cell death that acts to aggravate the damage. Here, we show that knockdown of the BET epigenetic reader BRD4 reduces the expression of ATF4 and XBP1 transcription factors under ER stress activation. BRD4 is recruited to the promoter of these highly acetylated genes, initiating gene transcription. Administration of the BET protein inhibitor, JQ1, one hour after renal damage induced by bilateral IRI, reveals reduced expression of ATF4 and XBP1 genes, low KIM-1 and NGAL levels and recovery of the serum creatinine and blood urea nitrogen levels. To determine the molecular pathways regulated by ATF4 and XBP1, we performed stable knockout of both transcription factors using CRISPR-Cas9 and RNA sequencing. The pathways triggered under ER stress were mainly XBP1-dependent, associated with an adaptive UPR, and partially regulated by JQ1. Meanwhile, treatment with JQ1 downmodulated most of the pathways regulated by ATF4 and related to the pathological processes during exacerbated UPR activation. Thus, BRD4 inhibition could be useful for curbing the maladaptive UPR activation mechanisms, thereby ameliorating the progression of renal disease.


Assuntos
Antineoplásicos , Traumatismo por Reperfusão , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Nucleares/genética , Estresse do Retículo Endoplasmático/genética , Resposta a Proteínas não Dobradas , Antineoplásicos/farmacologia , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Proteínas que Contêm Bromodomínio , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
3.
Front Immunol ; 13: 942192, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275696

RESUMO

The cellular immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in response to full mRNA COVID-19 vaccination could be variable among healthy individuals. Studies based only in specific antibody levels could show an erroneous immune protection at long times. For that, we analyze the antibody levels specific to the S protein and the presence of SARS-CoV-2-specific T cells by ELISpot and AIM assays in intensive care unit (ICU) workers with no antecedents of COVID-19 and vaccinated with two doses of mRNA COVID-19 vaccines. All individuals were seronegative for the SARS-CoV-2 protein S before vaccination (Pre-v), but 34.1% (14/41) of them showed pre-existing T lymphocytes specific for some viral proteins (S, M and N). One month after receiving two doses of COVID-19 mRNA vaccine (Post-v1), all cases showed seroconversion with high levels of total and neutralizing antibodies to the spike protein, but six of them (14.6%) had no T cells reactive to the S protein. Specifically, they lack of specific CD8+ T cells, but maintain the contribution of CD4+ T cells. Analysis of the immune response against SARS-CoV-2 at 10 months after full vaccination (Post-v10), exhibited a significant reduction in the antibody levels (p<0.0001) and protein S-reactive T cells (p=0.0073) in all analyzed individuals, although none of the individuals become seronegative and 77% of them maintained a competent immune response. Thus, we can suggest that the immune response to SARS-CoV-2 elicited by the mRNA vaccines was highly variable among ICU workers. A non-negligible proportion of individuals did not develop a specific T cell response mediated by CD8+ T cells after vaccination, that may condition the susceptibility to further viral infections with SARS-CoV-2. By contrast, around 77% of individuals developed strong humoral and cellular immune responses to SARS-CoV-2 that persisted even after 10 months. Analysis of the cellular immune response is highly recommended for providing exact information about immune protection against SARS-CoV-2.


Assuntos
COVID-19 , Vacinas Virais , Humanos , Anticorpos Neutralizantes , Linfócitos T CD8-Positivos , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Unidades de Terapia Intensiva , RNA Mensageiro/genética , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinação , Linfócitos T , Vacinas de mRNA
4.
Antioxidants (Basel) ; 11(7)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35883846

RESUMO

Loss of protein homeostasis (proteostasis) in the endoplasmic reticulum (ER) activates the unfolded protein response (UPR), restoring correct protein folding. Sustained ER stress exacerbates activation of the major UPR branches (IRE1α/XBP1, PERK/ATF4, ATF6), inducing expression of numerous genes involved in inflammation, cell death, autophagy, and oxidative stress. We investigated whether epigenetic dynamics mediated by histone H3K9 and H3K27 methylation might help to reduce or inhibit the exacerbated and maladaptive UPR triggered in tubular epithelial cells. Epigenetic treatments, specific silencing, and chromatin immunoprecipitation assays were performed in human proximal tubular cells subjected to ER stress. Pharmacological blockage of KDM4C and JMJD3 histone demethylases with SD-70 and GSKJ4, respectively, enhanced trimethylation of H3K9 and H3K27 in the ATF4 and XBP1 genes, inhibiting their expression and that of downstream genes. Conversely, specific G9a and EZH2 knockdown revealed increases in ATF4 and XBP1 expression. This is a consequence of the reduced recruitment of G9a and EZH2 histone methylases, diminished H3K9me3 and H3K27me3 levels, and enhanced histone acetylation at the ATF4 and XBP1 promoter region. G9a and EZH2 cooperate to maintain the repressive chromatin structure in both UPR-induced genes, ATF4 and XBP1. Therefore, preserving histone H3K9 and H3K27 methylation could ameliorate the ER stress, and consequently the oxidative stress and the triggered pathological processes that aggravate renal damage.

5.
J Am Soc Nephrol ; 33(2): 357-373, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35046131

RESUMO

BACKGROUND: Receptor-interacting protein kinase 3 (RIPK3), a component of necroptosis pathways, may have an independent role in inflammation. It has been unclear which RIPK3-expressing cells are responsible for the anti-inflammatory effect of overall Ripk3 deficiency and whether Ripk3 deficiency protects against kidney inflammation occurring in the absence of tubular cell death. METHODS: We used chimeric mice with bone marrow from wild-type and Ripk3-knockout mice to explore RIPK3's contribution to kidney inflammation in the presence of folic acid-induced acute kidney injury AKI (FA-AKI) or absence of AKI and kidney cell death (as seen in systemic administration of the cytokine TNF-like weak inducer of apoptosis [TWEAK]). RESULTS: Tubular and interstitial cell RIPK3 expressions were increased in murine AKI. Ripk3 deficiency decreased NF-κB activation and kidney inflammation in FA-AKI but did not prevent kidney failure. In the chimeric mice, RIPK3-expressing bone marrow-derived cells were required for early inflammation in FA-AKI. The NLRP3 inflammasome was not involved in RIPK3's proinflammatory effect. Systemic TWEAK administration induced kidney inflammation in wild-type but not Ripk3-deficient mice. In cell cultures, TWEAK increased RIPK3 expression in bone marrow-derived macrophages and tubular cells. RIPK3 mediated TWEAK-induced NF-κB activation and inflammatory responses in bone marrow-derived macrophages and dendritic cells and in Jurkat T cells; however, in tubular cells, RIPK3 mediated only TWEAK-induced Il-6 expression. Furthermore, conditioned media from TWEAK-exposed wild-type macrophages, but not from Ripk3-deficient macrophages, promoted proinflammatory responses in cultured tubular cells. CONCLUSIONS: RIPK3 mediates kidney inflammation independently from tubular cell death. Specific targeting of bone marrow-derived RIPK3 may limit kidney inflammation without the potential adverse effects of systemic RIPK3 targeting.


Assuntos
Injúria Renal Aguda/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Injúria Renal Aguda/genética , Injúria Renal Aguda/patologia , Animais , Medula Óssea/metabolismo , Citocina TWEAK/administração & dosagem , Modelos Animais de Doenças , Ácido Fólico/toxicidade , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Interleucina-6/metabolismo , Células Jurkat , Rim/metabolismo , Rim/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/deficiência , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Quimeras de Transplante/metabolismo , Regulação para Cima
6.
Trends Genet ; 38(2): 120-123, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34561103

RESUMO

The aging process is associated with the accumulation of epigenetic alterations in immune cells, although the origin of these changes is not clear. Understanding this epigenetic drift in the immune system can provide essential information about the progression of the aging process and the immune history of each individual.


Assuntos
Imunossenescência , Epigênese Genética , Epigenômica , Imunossenescência/genética , Linfócitos T
8.
Clin Epigenetics ; 13(1): 187, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635175

RESUMO

BACKGROUND: SARS-CoV-2 uses the angiotensin-converting enzyme 2 (ACE2) and neuropilin-1 (NRP1) receptors for entry into cells, and the serine protease TMPRSS2 for S protein priming. Inhibition of protease activity or the engagement with ACE2 and NRP1 receptors has been shown to be an effective strategy for blocking infectivity and viral spreading. Valproic acid (VPA; 2-propylpentanoic acid) is an epigenetic drug approved for clinical use. It produces potent antiviral and anti-inflammatory effects through its function as a histone deacetylase (HDAC) inhibitor. Here, we propose VPA as a potential candidate to tackle COVID-19, in which rapid viral spread and replication, and hyperinflammation are crucial elements. RESULTS: We used diverse cell lines (HK-2, Huh-7, HUVEC, Caco-2, and BEAS-2B) to analyze the effect of VPA and other HDAC inhibitors on the expression of the ACE-2 and NRP-1 receptors and their ability to inhibit infectivity, viral production, and the inflammatory response. Treatment with VPA significantly reduced expression of the ACE2 and NRP1 host proteins in all cell lines through a mechanism mediated by its HDAC inhibitory activity. The effect is maintained after SARS-CoV-2 infection. Consequently, the treatment of cells with VPA before infection impairs production of SARS-CoV-2 infectious viruses, but not that of other ACE2- and NRP1-independent viruses (VSV and HCoV-229E). Moreover, the addition of VPA 1 h post-infection with SARS-CoV-2 reduces the production of infectious viruses in a dose-dependent manner without significantly modifying the genomic and subgenomic messenger RNAs (gRNA and sg mRNAs) or protein levels of N protein. The production of inflammatory cytokines (TNF-α and IL-6) induced by TNF-α and SARS-CoV-2 infection is diminished in the presence of VPA. CONCLUSIONS: Our data showed that VPA blocks three essential processes determining the severity of COVID-19. It downregulates the expression of ACE2 and NRP1, reducing the infectivity of SARS-CoV-2; it decreases viral yields, probably because it affects virus budding or virions stability; and it dampens the triggered inflammatory response. Thus, administering VPA could be considered a safe treatment for COVID-19 patients until vaccines have been rolled out across the world.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , COVID-19/prevenção & controle , Epigênese Genética/fisiologia , Neuropilina-1/genética , Receptores Virais/efeitos dos fármacos , Ácido Valproico/farmacologia , Enzima de Conversão de Angiotensina 2/efeitos dos fármacos , Antivirais/farmacologia , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Epigênese Genética/genética , Humanos , Neuropilina-1/efeitos dos fármacos , SARS-CoV-2
9.
Front Immunol ; 12: 709164, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34489960

RESUMO

Operational tolerance after kidney transplantation is defined as stable graft acceptance without the need for immunosuppression therapy. However, it is not clear which cellular and molecular pathways are driving tolerance in these patients. We performed genome-wide analysis of DNA methylation in peripheral blood mononuclear cells from kidney transplant recipients with chronic rejection and operational tolerance from the Genetic Analysis of Molecular Biomarkers of Immunological Tolerance (GAMBIT) study. Our results showed that both clinical stages diverge in 2737 genes, indicating that each one has a specific methylation signature associated with transplant outcome. We also observed that tolerance is associated with demethylation in genes involved in immune function, including B and T cell activation and Th17 differentiation, while in chronic rejection it is associated with intracellular signaling and ubiquitination pathways. Using co-expression network analysis, we selected 12 genomic regions that are specifically hypomethylated or hypermethylated in tolerant patients. Analysis of these genes in transplanted patients with low dose of steroids showed that these have a similar methylation signature to that of tolerant recipients. Overall, these results demonstrate that methylation analysis can mirror the immune status associated with transplant outcome and provides a starting point for understanding the epigenetic mechanisms associated with tolerance.


Assuntos
Metilação de DNA , Transplante de Rim , Tolerância ao Transplante , Adulto , Idoso , Idoso de 80 Anos ou mais , Rejeição de Enxerto , Humanos , Terapia de Imunossupressão , Transplante de Rim/efeitos adversos , Pessoa de Meia-Idade , Células Th17/imunologia , Adulto Jovem
10.
J Invest Dermatol ; 141(6): 1522-1532.e3, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33181141

RESUMO

Allergic contact dermatitis, also known as contact hypersensitivity, is a frequent T-cell‒mediated inflammatory skin disease characterized by red, itchy, swollen, and cracked skin. It is caused by the direct contact with an allergen and/or irritant hapten. Galectin-1 (Gal-1) is a ß-galactoside‒binding lectin, which is highly expressed in several types of immune cells. The role of endogenous Gal-1 in contact hypersensitivity is not known. We found that Gal-1‒deficient mice display more sustained and prolonged skin inflammation than wild-type mice after oxazolone treatment. Gal-1‒deficient mice have increased CD8+ T cells and neutrophilic infiltration in the skin. After the sensitization phase, Gal-1‒depleted mice showed an increased frequency of central memory CD8+ T cells and IFN-γ secretion by CD8+ T cells. The absence of Gal-1 does not affect the migration of transferred CD4+ and CD8+ T cells from the blood to the lymph nodes or to the skin. The depletion of CD4+ T lymphocytes as well as adoptive transfer experiments demonstrated that endogenous expression of Gal-1 on CD8+ T lymphocytes exerts a major role in the control of contact hypersensitivity model. These data underscore the protective role of endogenous Gal-1 in CD8+ but not CD4+ T cells in the development of allergic contact dermatitis.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Dermatite Alérgica de Contato/imunologia , Galectina 1/deficiência , Pele/patologia , Transferência Adotiva , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/transplante , Linfócitos T CD8-Positivos/metabolismo , Dermatite Alérgica de Contato/patologia , Modelos Animais de Doenças , Feminino , Galectina 1/genética , Humanos , Masculino , Camundongos , Oxazolona/administração & dosagem , Oxazolona/imunologia , Pele/imunologia
11.
J Allergy Clin Immunol ; 145(1): 199-214.e11, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31605740

RESUMO

BACKGROUND: Psoriasis is a frequent inflammatory skin disease that is mainly mediated by IL-23, IL-1ß, and IL-17 cytokines. Although psoriasis is a hyperproliferative skin disorder, the possible role of amino acid transporters has remained unexplored. OBJECTIVE: We sought to investigate the role of the essential amino acid transporter L-type amino acid transporter (LAT) 1 (SLC7A5) in psoriasis. METHODS: LAT1 floxed mice were crossed to Cre-expressing mouse strains under the control of keratin 5, CD4, and retinoic acid receptor-related orphan receptor γ. We produced models of skin inflammation induced by imiquimod (IMQ) and IL-23 and tested the effect of inhibiting LAT1 (JPH203) and mammalian target of rapamycin (mTOR [rapamycin]). RESULTS: LAT1 expression is increased in keratinocytes and skin-infiltrating lymphocytes of psoriatic lesions in human subjects and mice. LAT1 deletion in keratinocytes does not dampen the inflammatory response or their proliferation, which could be maintained by increased expression of the alternative amino acid transporters LAT2 and LAT3. Specific deletion of LAT1 in γδ and CD4 T cells controls the inflammatory response induced by IMQ. LAT1 deletion or inhibition blocks expansion of IL-17-secreting γ4+δ4+ and CD4 T cells and dampens the release of IL-1ß, IL-17, and IL-22 in the IMQ-induced model. Moreover, inhibition of LAT1 blocks expansion of human γδ T cells and IL-17 secretion by human CD4 T cells. IL-23 and IL-1ß stimulation upregulates LAT1 expression and induces mTOR activation in IL-17+ γδ and TH17 cells. Deletion or inhibition of LAT1 efficiently controls IL-23- and IL-1ß-induced phosphatidylinositol 3-kinase/AKT/mTOR activation independent of T-cell receptor signaling. CONCLUSION: Targeting LAT1-mediated amino acid uptake is a potentially useful immunosuppressive strategy to control skin inflammation mediated by the IL-23/IL-1ß/IL-17 axis.


Assuntos
Imunidade Adaptativa , Sistema y+L de Transporte de Aminoácidos/imunologia , Imunidade Inata , Transportador 1 de Aminoácidos Neutros Grandes/imunologia , Psoríase/imunologia , Pele/imunologia , Células Th17/imunologia , Sistema y+L de Transporte de Aminoácidos/genética , Animais , Citocinas/genética , Citocinas/imunologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Transportador 1 de Aminoácidos Neutros Grandes/genética , Camundongos , Camundongos Transgênicos , Psoríase/genética , Psoríase/patologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Pele/patologia , Células Th17/patologia
12.
Front Immunol ; 10: 2951, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31998288

RESUMO

Macrophage activation and polarization are closely linked with metabolic rewiring, which is required to sustain their biological functions. These metabolic alterations allow the macrophages to adapt to the microenvironment changes associated with inflammation or tissue damage (hypoxia, nutrient imbalance, oxidative stress, etc.) and to fulfill their highly energy-demanding proinflammatory and anti-microbial functions. This response is integrated via metabolic sensors that coordinate these metabolic fluxes with their functional requirements. Here we review how the metabolic and phenotypic plasticity of macrophages are intrinsically connected with the hypoxia stress sensors and the unfolded protein response in the endoplasmic reticulum, and how these molecular pathways participate in the maladaptive polarization of macrophages in human pathology and chronic inflammation.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Hipóxia/fisiopatologia , Macrófagos/fisiologia , Animais , Humanos , Inflamação/fisiopatologia , Ativação de Macrófagos/fisiologia , Transdução de Sinais/fisiologia
13.
Front Immunol ; 9: 1074, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29875769

RESUMO

Professional antigen-presenting cells (APCs) include dendritic cells, monocytes, and B cells. APCs internalize and process antigens, producing immunogenic peptides that enable antigen presentation to T lymphocytes, which provide the signals that trigger T-cell activation, proliferation, and differentiation, and lead to adaptive immune responses. After detection of microbial antigens through pattern recognition receptors (PRRs), APCs migrate to secondary lymphoid organs where antigen presentation to T lymphocytes takes place. Tetraspanins are membrane proteins that organize specialized membrane platforms, called tetraspanin-enriched microdomains, which integrate membrane receptors, like PRR and major histocompatibility complex class II (MHC-II), adhesion proteins, and signaling molecules. Importantly, through the modulation of the function of their associated membrane partners, tetraspanins regulate different steps of the immune response. Several tetraspanins can positively or negatively regulate the activation threshold of immune receptors. They also play a role during migration of APCs by controlling the surface levels and spatial arrangement of adhesion molecules and their subsequent intracellular signaling. Finally, tetraspanins participate in antigen processing and are important for priming of naïve T cells through the control of T-cell co-stimulation and MHC-II-dependent antigen presentation. In this review, we discuss the role of tetraspanins in APC biology and their involvement in effective immune responses.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Tetraspaninas/metabolismo , Animais , Apresentação de Antígeno/imunologia , Movimento Celular/genética , Movimento Celular/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Antígenos de Histocompatibilidade Classe II/imunologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Imunomodulação , Transporte Proteico , Receptores de Reconhecimento de Padrão/metabolismo , Tetraspaninas/genética
14.
PLoS Pathog ; 13(12): e1006799, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29281743

RESUMO

Recent evidence on HDAC6 function underlines its role as a key protein in the innate immune response to viral infection. However, whether HDAC6 regulates innate immunity during bacterial infection remains unexplored. To assess the role of HDAC6 in the regulation of defence mechanisms against intracellular bacteria, we used the Listeria monocytogenes (Lm) infection model. Our data show that Hdac6-/- bone marrow-derived dendritic cells (BMDCs) have a higher bacterial load than Hdac6+/+ cells, correlating with weaker induction of IFN-related genes, pro-inflammatory cytokines and nitrite production after bacterial infection. Hdac6-/- BMDCs have a weakened phosphorylation of MAPK signalling in response to Lm infection, suggesting altered Toll-like receptor signalling (TLR). Compared with Hdac6+/+ counterparts, Hdac6-/- GM-CSF-derived and FLT3L-derived dendritic cells show weaker pro-inflammatory cytokine secretion in response to various TLR agonists. Moreover, HDAC6 associates with the TLR-adaptor molecule Myeloid differentiation primary response gene 88 (MyD88), and the absence of HDAC6 seems to diminish the NF-κB induction after TLR stimuli. Hdac6-/- mice display low serum levels of inflammatory cytokine IL-6 and correspondingly an increased survival to a systemic infection with Lm. The impaired bacterial clearance in the absence of HDAC6 appears to be caused by a defect in autophagy. Hence, Hdac6-/- BMDCs accumulate higher levels of the autophagy marker p62 and show defective phagosome-lysosome fusion. These data underline the important function of HDAC6 in dendritic cells not only in bacterial autophagy, but also in the proper activation of TLR signalling. These results thus demonstrate an important regulatory role for HDAC6 in the innate immune response to intracellular bacterial infection.


Assuntos
Autofagia/imunologia , Desacetilase 6 de Histona/imunologia , Imunidade Inata , Listeria monocytogenes/imunologia , Listeria monocytogenes/patogenicidade , Receptores Toll-Like/imunologia , Animais , Células Dendríticas/imunologia , Feminino , Desacetilase 6 de Histona/deficiência , Desacetilase 6 de Histona/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Interleucina-6/sangue , Listeriose/enzimologia , Listeriose/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/imunologia , Transdução de Sinais/imunologia
15.
Front Immunol ; 8: 1854, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29312336

RESUMO

Tetraspanins are a family of proteins with four transmembrane domains that associate between themselves and cluster with other partner proteins, conforming a distinct class of membrane domains, the tetraspanin-enriched microdomains (TEMs). These TEMs constitute macromolecular signaling platforms that regulate key processes in several cellular settings controlling signaling thresholds and avidity of receptors. In this study, we investigated the role of CD9, a tetraspanin that regulates major biological processes such as cell migration and immunological responses, in two mouse models of colitis that have been used to study the pathogenesis of inflammatory bowel disease (IBD). Previous in vitro studies revealed an important role in the interaction of leukocytes with inflamed endothelium, but in vivo evidence of the involvement of CD9 in inflammatory diseases is scarce. Here, we studied the role of CD9 in the pathogenesis of colitis in vivo. Colitis was induced by administration of dextran sodium sulfate (DSS), a chemical colitogen that causes epithelial disruption and intestinal inflammation. CD9-/- mice showed less severe colitis than wild-type counterparts upon exposure to DSS (2% solution) and enhanced survival in response to a lethal DSS dose (4%). Decreased neutrophil and macrophage cell infiltration was observed in colonic tissue from CD9-/- animals, in accordance with their lower serum levels of TNF-α, IL-6, and other proinflammatory cytokines in the colon. The specific role of CD9 in IBD was further dissected by transfer of CD4+ CD45RBhi naive T cells into the Rag1-/- mouse colitis model. However, no significant differences were observed in these settings between both groups, ruling out a role for CD9 in IBD in the lymphoid compartment. Experiments with bone marrow chimeras revealed that CD9 in the non-hematopoietic compartment is involved in colon injury and limits the proliferation of epithelial cells. Our data indicate that CD9 in non-hematopoietic cells plays an important role in colitis by limiting epithelial cell proliferation. Future strategies to repress CD9 expression may be of therapeutic benefit in the treatment of IBD.

17.
Nat Immunol ; 17(8): 985-96, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27376471

RESUMO

The activation marker CD69 is expressed by skin γδ T cells. Here we found that CD69 controlled the aryl hydrocarbon receptor (AhR)-dependent secretion of interleukin 22 (IL-22) by γδ T cells, which contributed to the development of psoriasis induced by IL-23. CD69 associated with the aromatic-amino-acid-transporter complex LAT1-CD98 and regulated its surface expression and uptake of L-tryptophan (L-Trp) and the intracellular quantity of L-Trp-derived activators of AhR. In vivo administration of L-Trp, an inhibitor of AhR or IL-22 abrogated the differences between CD69-deficient mice and wild-type mice in skin inflammation. We also observed LAT1-mediated regulation of AhR activation and IL-22 secretion in circulating Vγ9(+) γδ T cells of psoriatic patients. Thus, CD69 serves as a key mediator of the pathogenesis of psoriasis by controlling LAT1-CD98-mediated metabolic cues.


Assuntos
Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Lectinas Tipo C/metabolismo , Psoríase/imunologia , Pele/imunologia , Subpopulações de Linfócitos T/imunologia , Células Th17/imunologia , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+L de Transporte de Aminoácidos , Animais , Antígenos CD/genética , Antígenos de Diferenciação de Linfócitos T/genética , Células Cultivadas , Endocitose , Proteína-1 Reguladora de Fusão/metabolismo , Interleucina-23/imunologia , Interleucinas/metabolismo , Lectinas Tipo C/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Triptofano/metabolismo
18.
EMBO J ; 35(5): 536-52, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26843485

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a major health problem and the main cause of liver disease in Western countries. Although NAFLD is strongly associated with obesity and insulin resistance, its pathogenesis remains poorly understood. The disease begins with an excessive accumulation of triglycerides in the liver, which stimulates an inflammatory response. Alternative p38 mitogen-activated kinases (p38γ and p38δ) have been shown to contribute to inflammation in different diseases. Here we demonstrate that p38δ is elevated in livers of obese patients with NAFLD and that mice lacking p38γ/δ in myeloid cells are resistant to diet-induced fatty liver, hepatic triglyceride accumulation and glucose intolerance. This protective effect is due to defective migration of p38γ/δ-deficient neutrophils to the damaged liver. We further show that neutrophil infiltration in wild-type mice contributes to steatosis development by means of inflammation and liver metabolic changes. Therefore, p38γ and p38δ in myeloid cells provide a potential target for NAFLD therapy.


Assuntos
Fígado/metabolismo , Proteína Quinase 12 Ativada por Mitógeno/metabolismo , Proteína Quinase 13 Ativada por Mitógeno/metabolismo , Infiltração de Neutrófilos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/metabolismo , Adulto , Idoso , Animais , Feminino , Intolerância à Glucose , Humanos , Masculino , Camundongos Knockout , Pessoa de Meia-Idade , Proteína Quinase 12 Ativada por Mitógeno/genética , Proteína Quinase 12 Ativada por Mitógeno/imunologia , Proteína Quinase 13 Ativada por Mitógeno/genética , Proteína Quinase 13 Ativada por Mitógeno/imunologia , Hepatopatia Gordurosa não Alcoólica/imunologia , Obesidade/imunologia , RNA Mensageiro/metabolismo , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...